"In order to use the network in lwtnn, we need to export the neural network with the `export()` method. This export one network per fold. It is the reposibility of the use to implement the cross validation in the analysis framework."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
"source": [
"net.export(\"lwtnn\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
"source": [
"!ls lwtnn*"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The final, manuel step is to run the lwtnn's converter using the shortcut script `test.sh`."
In order to use the network in lwtnn, we need to export the neural network with the `export()` method. This export one network per fold. It is the reposibility of the use to implement the cross validation in the analysis framework.
%% Cell type:code id: tags:
``` python
net.export("lwtnn")
```
%% Cell type:code id: tags:
``` python
!lslwtnn*
```
%% Cell type:markdown id: tags:
The final, manuel step is to run the lwtnn's converter using the shortcut script `test.sh`.